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Abstract—Brain region-of-interest (ROI) segmentation based
on structural magnetic resonance imaging (MRI) scans is an
essential step for many computer-aid medical image analysis
applications. Due to low intensity contrast around ROI boundary
and large inter-subject variance, it has been remaining a chal-
lenging task to effectively segment brain ROIs from structural
MR images. Even though several deep learning methods for brain
MR image segmentation have been developed, most of them do
not incorporate shape priors to take advantage of the regularity
of brain structures, thus leading to sub-optimal performance.
To address this issue, we propose an anatomical attention
guided deep learning framework for brain ROI segmentation
of structural MR images, containing two subnetworks. The first
one is a segmentation subnetwork, used to simultaneously extract
discriminative image representation and segment ROIs for each
input MR image. The second one is an anatomical attention
subnetwork, designed to capture the anatomical structure in-
formation of the brain from a set of labeled atlases. To utilize
the anatomical attention knowledge learned from atlases, we
develop an anatomical gate architecture to fuse feature maps
derived from a set of atlas label maps and those from the to-be-
segmented image for brain ROI segmentation. In this way, the
anatomical prior learned from atlases can be explicitly employed
to guide the segmentation process for performance improvement.
Within this framework, we develop two anatomical attention
guided segmentation models, denoted as anatomical gated fully
convolutional network (AG-FCN) and anatomical gated U-Net
(AG-UNet), respectively. Experimental results on both ADNI
and LONI-LPBA40 datasets suggest that the proposed AG-FCN
and AG-UNet methods achieve superior performance in ROI
segmentation of brain MR images, compared with several state-
of-the-art methods.

Index Terms—Anatomical Attention, Deep Learning, ROI
Segmentation, Brain MR Image

I. INTRODUCTION

BRAIN region-of-interest (ROI) segmentation is an im-
portant prerequisite step for many computer-aid medical
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image analysis tasks [1]–[6]. For instance, in the pipeline
of brain network analysis for brain disease diagnosis, brain
MR images are usually segmented into multiple ROIs for
constructing brain networks, and the constructed brain net-
works are further used for subsequent analysis and diagnosis.
However, manually labeling ROIs of brain MR images is not
only time-consuming but also error-prone even for experts.
Hence, it is practically useful to develop an effective method
to automatically segment ROIs of brain MRIs.

Recent years, deep learning methods achieve great success
in medical image segmentation and computer-aided brain
disease diagnosis [6]–[12]. Among these methods, several end-
to-end networks have been developed for automated image
segmentation, which typically include two parts, i.e., 1) encod-
ing parts, and 2) decoding parts. Specifically, the encoding path
is employed to extract high-level contextual feature maps from
the input image, while the decoding part up-sample these high-
level feature maps to predict the dense label map of the to-be-
segmented image. Since the human brain has a complicated
anatomical structure, brain MR images usually have low
intensity contrast around the boundary of ROIs and large
variance between different subjects. However, existing deep
learning methods generally ignore the anatomical structure
information of the brain, thus prone to generating sub-optimal
brain ROI segmentation performance.

In the last decade, multi-atlas based segmentation methods
have shown their superior performance in ROI segmentation
of brain MR images [13]–[16], compared with conventional
single-atlas based methods. In multi-atlas based segmentation
framework, a set of labeled atlases are firstly registered onto
the common space of the to-be-segmented image, and then
the labels of multiple atlases are propagated to determine
the final label map of the to-be-segmented image. The main
advantage of the multi-atlas based segmentation framework is
that it can take advantage of the rich anatomical information of
the human brain provided by multiple registered atlases (other
than one single atlas). However, these methods usually employ
handcrafted features (e.g., image intensity) to represent brain
MR images, and these handcrafted features may not be well
coordinated with subsequent label propagation algorithms,
thus negatively affecting the segmentation performance. It’s
desired to extract task-oriented features of brain MR images
for accurate ROI segmentation. Besides, multi-atlas based seg-
mentation methods are generally time consuming, especially
when using a large number of atlas images [17]. Note that,
for clinical applications, computation time is one of the most
important issues that has to be considered.

To address these issues, in this paper, we propose an
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Fig. 1. Illustration of the proposed anatomical attention guided deep learning framework for ROI segmentation of brain MR images. Two major components
are included: (1) a segmentation subnetwork for end-to-end brain ROI segmentation (with a U-Net architecture [18], [19] for illustration), and (2) an anatomical
attention subnetwork to capture the anatomical structure information of the brain provided by label maps of multiple atlases. The input contains a to-be-segment
brain MR image and multiple atlas label maps, while the output is the label map of the input image.

anatomical attention guided framework to segment ROIs of
brain MR images. Specifically, as shown in Fig. 1, the pro-
posed framework consists of two subnetworks, i.e., (1) the
segmentation subnetwork (with a U-Net architecture [18], [19]
as an illustration) and (2) the anatomical attention subnet-
work. The segmentation subnetwork follows a conventional
convolutional network architecture with a prediction layer for
image segmentation, while the anatomical attention subnet-
work only contains several convolutional and deconvolutional
layers. The input data of this framework include the to-be-
segmented image for segmentation subnetwork and the label
maps of multiple registered atlases for the anatomical attention
subnetwork. Meanwhile, the output is the segmented image
with brain ROIs. To effectively incorporate the anatomical
structure information of the brain (i.e., features maps learned
by the anatomical attention subnetwork) into the segmentation
subnetwork, we introduce an anatomical gate to integrate these
two subnetworks to a unified framework for ROI segmentation.
Accordingly, the extracted feature maps that are derived from
the segmentation and anatomical attention subnetworks can be
adaptively fused in a task-oriented learning manner. Within
this framework, we develop two anatomical attention guided
segmentation models, which are denoted as anatomical gated
fully convolutional network (AG-FCN) and anatomical gated
UNet (AG-UNet), respectively. Experimental results on 100
subjects from the ADNI and LONI-LPBA40 datasets suggest
that our AG-FCN and AG-UNet methods achieve superior
performance in multiple ROI segmentation, compared with
several state-of-the-art methods.

The major contributions of this paper can be summarized
as follows. First, we create an anatomical attention guided
deep learning framework to explicitly make use of anatomical
prior of brain structures (provided by multiple labeled atlases)
for ROI segmentation. Second, we develop an anatomical gate
architecture to fuse the extracted features from the to-be-
segmented image and label maps of registered atlases in a
data-driven manner. Third, within the proposed framework, we
propose two anatomical attention guided deep learning models
(i.e., AG-FCN and AG-UNet) using two different network
architectures. Fourth, we evaluate the proposed methods on
ROI segmentation of brain MR images from two public
datasets (i.e., ADNI and LONI-LPBA40), with experimental

results suggesting the effectiveness of our methods.
The rest of the paper is organized as follows. We first briefly

review related studies in Section II. Then, we introduce the
proposed anatomical attention guided deep learning framework
in Section III. In Section IV, we present materials used in
this study, experimental settings, and experimental results.
In Section V, we study the influence of parameters in the
proposed methods and present the limitations of the current
study as well as possible future directions. We finally conclude
this paper in Section VI.

II. RELATED WORK

In this section, we first briefly review relevant studies on
deep learning based methods for medical image segmenta-
tion, and then introduce related studies on multi-atlas based
methods for ROI segmentation of brain MR images.

A. Deep Learning for Medical Image Segmentation

In recent years, convolutional neural networks (CNNs) have
shown competitive performance in the field of medical image
segmentation [7], [8], abnormal region detection [9], [10], and
disease diagnosis [6], [11], [12]. Among numerous CNN-based
methods, the end-to-end network architecture is commonly
used in the task of medical image segmentation, which can
directly map the original image from its intensity space to
a label space. These end-to-end networks typically consist
of an encoding path and a decoding path. The encoding
path usually contains several convolutional and pooling op-
erations, which can automatically learn the high-level contex-
tual features of the to-be-segmentation image. The decoding
path typically contains several up-sampling/deconvolutional
operations, which can decode low-resolution feature maps to
high-resolution ones. Due to the up-sampling/deconvolutional
operation, the segmented image (i.e., label map) has the same
size as the input image. In the early end-to-end network
architectures, fully connected layers are usually used to convert
the high dimensional feature maps to 1D feature vector. Since
the parameter number of fully connected layers depends on
the size of input images, these networks with fully connected
layers can only process images with a fixed size.

As one of the state-of-the-art end-to-end architectures, fully
convolutional networks (FCN) [20] contain only convolutional
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layers, and hence can perform voxel-wise segmentation for a
whole image with an arbitrary size. Moreover, the absence of
fully connected layers could reduce the number of parameters,
which makes FCN faster than traditional network architectures
in both training and test stages. In FCN, the pooling operation
is usually used in the encoding path to extract high-level
contextual information of the input image, but it also leads
to the loss of spatial information of images, thereby reducing
the performance of dense prediction.

To effectively combine high-resolution spatial features with
high-level contextual features for dense prediction, the U-
Net [18], [19] architecture is proposed for biomedical image
segmentation. Similar to conventional FCN methods, U-Net
also consists of both encoding and decoding paths, with a
coarse-fine-connected shortcut architecture. Due to shortcuts
for multi-scale feature integration, the high-level contextual
feature maps and the high-resolution feature maps can be fused
in U-Net to improve the performance of dense prediction.
However, existing deep learning methods generally ignore
the important anatomical structure information of the brain,
thus prone to generating sub-optimal performance in ROI
segmentation of brain MR images.

B. Multi-atlas Methods for Brain ROI Segmentation

As a hot topic in the field of medical image analysis, large
amounts of neuroimage-based applications often depend on
brain ROI segmentation. Among various machine learning
methods, multi-atlas based segmentation methods [13]–[16],
[21]–[38] have shown their advantages in medical image
segmentation in recent years, especially for brain ROI seg-
mentation. Generally, multi-atlas based segmentation methods
consist of two key steps, i.e., 1) image registration [39]–
[42] and 2) label fusion. In the image registration step, both
affine registration and deformable registration are performed
to register multiple atlas images onto a common space of the
to-be-segmented image. Then, in the label fusion step, labels
of multiple atlases are propagated to the target image by using
a specific label fusion strategy. Many recent studies focus on
the second step (i.e., label fusion) for multi-atlas based ROI
segmentation of brain MR images.

As a commonly used label fusion method, the majority
voting (MV) strategy treats each propagated label of atlas
equally when determining the final label of to-be-segmented
voxels. However, MV-based method ignores the inter-variance
between different subjects, by treating all atlases equally.
Based on the assumption of voxels should have the same label
if they have the similar local appearance, the locally-weighted
voting (LWV) method [21] is proposed for label fusion, which
considers the pairwise local appearance similarity between the
to-be-segmentation voxel and voxels at the same location in
each atlas. Hence, the voxel in an atlas with the high local
appearance similarity to the to-be-segmented voxel has a large
voting weight for label fusion. However, the performances
of MV and LWV heavily depend on the results of image
registration algorithms, while it is inevitable to produce reg-
istration errors in the registration step. To alleviate possible
registration errors, several non-local label fusion methods have

been proposed. As an example, non-local mean patch-based
methods (PBM) [14] propagate the labels not only from the
same location in each atlas, but also from a certain local
region based on the patch-wise similarity. More recently, some
learning-based methods are proposed, such as the joint label
fusion method (JLF) [16], [43] that minimizes the expectation
of labelling error between the similar patch to jointly learn the
voting weights of patches. The JLF method reduces the risk of
propogated labelling errors from a similar patch on the atlases.
Besides, sparse dictionary learning methods have been also
employed for learning the voting weights for label fusion. In
the sparse patch-based method (SPBM) [23], a set of patches
in a search region of the to-be-segmented voxel on the atlas is
firstly selected to construct a region-specific dictionary. Then,
this dictionary is used to reconstruct the target patch centered
at the to-be-segmented voxel. Due to the use of an l1-norm
constraint, only a small number of patches with high similarity
to the target patch are finally selected to determine the label
of to-be-segmented images.

Using anatomical prior knowledge provided by multiple at-
las images has been demonstrated to be useful in improving the
performance of brain ROI segmentation with MR images [21],
[25], [27], [28], [34], [35]. Existing multi-atlas based methods
usually use handcrafted MRI features (e.g., image intensity),
which may degrade segmentation performance due to hetero-
geneity between features and subsequent label propagation
algorithms. Besides, multi-atlas based methods are generally
time-consuming since the segmentation is performed in a
voxel-by-voxel manner. In contrast, deep networks can extract
task-oriented features of brain MR images in a data-driven
manner and predict dense label maps of target images at the
entire image level (other than for voxel level), so they are
usually much faster than multi-atlas based methods. In order
to combine the advantages of both deep learning and multi-
atlas based methods, we will introduce a unique anatomical
attention guided deep learning framework to perform ROI
segmentation of brain MR images, where the anatomical prior
provided by multiples atlases can be explicitly employed to
guide the image segmentation process.

III. METHODOLOGY

In this section, we first introduce the notations used in
this paper. We then present the architecture of the proposed
anatomical attention guided deep network and introduce the
proposed anatomical gate in detail. Finally, we introduce the
implementation details of brain ROI segmentation using our
proposed method.

A. Notations
Given a to-be-segmented brain MR image I ∈ Rw×h×d,

where w, h and d is the dimension of the input MR image. The
aim of brain ROI segmentation is to automatically segment the
MR image into multiple ROIs and obtain its label map LI. To
capture the complicated anatomical structures of the human
brain, we use a set of labeled atlases to guide the network
training process. In this study, we use Ak to denote the k-th
atlas, which contains the atlas image Ik and its corresponding
label map Lk.
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B. Anatomical Attention Guided Deep Learning Framework

Fig. 1 shows the proposed anatomical attention guided
deep learning framework implemented for the U-Net architec-
ture [18], [19]. There are two subnetworks in the proposed
framework, i.e., (1) the segmentation subnetwork, and (2)
the anatomical attention subnetwork to model the anatomical
structure information of the brain provided by label maps of
multiple atlases.

The segmentation subnetwork has a similar network archi-
tecture as U-Net [18], [19], where the left half part is the
encoding path and the right half is the decoding path. In
the encoding path, there are six convolutional layers (size:
3× 3× 3) and two max-pooling layers (size: 2× 2× 2). The
first two convolutional layers and the first max-pooling layer
have the same number of channels (i.e., 32), the following
two convolutional layers and the second max-pooling layer
have 64 channels, and the last two convolutional layers have
128 channels. Each convolution operation is performed using
3 × 3 × 3 kernel, followed by batch normalization (BN)
and rectified linear unit (ReLU) activation. Different from
conventional U-Net architecture, the proposed anatomical gate
follows each max-pooling layer in the encoding path of our
network, which is used to fuse the down-sampled feature maps
generated by the segmentation subnetwork and the down-
sampled features maps of the anatomical attention subnetwork.

In the decoding path, a deconvolutional layer (size: 2×2×2;
number of channels: 64) is employed to up-sample the feature
maps generated by the encoding path. Then, the output of
the deconvolutional layer is concatenated with the output of
its corresponding convolution layer in the encoding path. An
anatomical gate (with details given in Section III-C) follows
the concatenated layer, which is used to incorporate the up-
sampled features maps of the anatomical attention subnet-
work into the segmentation subnetwork. The output of this
anatomical gate is further fed into two convolutional layers
(size: 3 × 3 × 3; number of channels: 64) with BN and
ReLU, followed by a deconvolutional layer (size: 2 × 2 × 2;
number of channels: 32) for image up-sampling. Then, an
additional anatomical gate is applied to the concatenated
layer (of the output of the former deconvolutional layer and
that of its corresponding convolutional layer in the encoding
path), followed by two 32-channel convolutional layers (size:
3×3×3) and a C-channel convolutional layers (size: 1×1×1).
Finally, a softmax non-linear unit is used for predicting the
probability map P = {pi}

w×h×d
i=1 for the to-be-segmented

image I, where pi ∈ RC denote the probability of the i-th
voxel belonging to the a specific ROI or background, and C
is the number of categories (including ROIs and background).
Based on the ground-truth label map for the training image,
we employ a cross-entropy loss to train the network as follows

− 1

N × w × h× d

N∑
j=1

w×h×d∑
i=1

C∑
c=1

δ(LIj,i , c) log p
c
j,i, (1)

where N is batch size, and δ(LIj,i , c) is a Dirac function,
which equal to 1 when LIj,i = c; and 0, otherwise. Also,
the term pcj,i denotes the probability of the i-th voxel of each
image in a batch belonging to the c-th category.
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Fig. 2. Overview of the proposed anatomical gate in our anatomical attention
guided deep learning framework, used to integrate anatomical prior provided
by atlases into the segmentation process. The input of the anatomical gate
includes two feature maps generated by two subnetworks, which are first
concatenated channel-wisely. Then, the concatenated feature map is fed into
two parallel convolutional layers. Each convolutional layer is followed by a
sigmoid unit to learn the specific weight tensor for each input feature map.
Each weighted tensor is further combined with its original feature map by
an element-wise multiplication operation, leading to a weighted feature map.
Finally, the weighted feature maps corresponding are fused via an element-
wise addition operation to generate a weighted sum feature map.

The proposed anatomical attention subnetwork is a modified
version of the segmentation subnetwork, with label maps of
multiple atlases as input data. For each atlas, we first register
each of multiple atlases onto the to-be-segmented images.
Typically, we first use FLIRT in the FSL [40] toolbox for affine
registration, and then a deformable registration is performed
using the Diffeomorphic Demons method [41]. Each label map
of the registered atlas is treated as a channel of the input of
our anatomical attention subnetwork. As shown in the bottom
part of Fig. 1, in the anatomical attention subnetwork, each
block of encoding path consists of two convolutional layers
and a max-pooling layer with the same architecture as the seg-
mentation subnetwork, while each block of the decoding path
consist of a deconvolution layer and two convolutional layers
with the same architecture as the segmentation subnetwork.
Among these layers, feature maps of each max-pooling layer
or deconvolution layer are integrated into the segmentation
subnetwork via the proposed anatomical gate. Hence, the
anatomical structure information provided by labeled atlases
can be employed as the guidance information to boost the
performance of ROI segmentation with brain MR images. In
the following, we give the details of the proposed anatomical
gate for fusing the extracted feature maps generated from
both the segmentation subnetwork and the anatomical attention
subnetwork.

C. Anatomical Gate

Because of the complicated human brain structure, low
intensity contrast around the boundary of ROIs and large
inter-subject variance in brain MR images, only using im-
age intensity information is not enough to perform accurate
brain ROI segmentation. In the multi-atlas based segmenta-
tion framework, the label fusion step typically utilizes the
anatomical prior from multiple atlases for ROI segmentation.
Accordingly, we also introduce the anatomical prior to the
proposed deep network for ROI segmentation of brain MR
images. As mentioned in Section III-B, our proposed network
consists of two subnetworks, i.e., the segmentation subnetwork
and the anatomical attention subnetwork. Specifically, the
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segmentation subnetwork learns feature maps based on image
intensity, which only encode the local contextual information
of brain MR images. The anatomical attention subnetwork
learns the anatomical prior of the brain from a set of labeled
atlases, which encodes the local brain structure information
from the registered atlases.

To better integrate the local contextual information of MR
images and brain anatomical structure information, in this
work, we propose an anatomical gate to fuse feature maps
generated by both the segmentation and anatomical attention
subnetworks. As shown in Fig. 2, the output feature map
fsi of the s-th layer in the segmentation subnetwork and
that generated by the anatomical attention subnetwork fsa
are firstly concatenated as [fsi , f

s
a ] channel-wisely. Then, the

concatenated feature map is fed into two parallel convolutional
layers (size: 1×1×1), and each convolutional layer is followed
by a sigmoid non-linear unit to learn the specific weight tensor
(e.g., osi ) for each input feature map. Specifically, these two
weight tensors are learned as follows

osi = σ(W s
i ∗ [fsi , fsa ] + b), (2)

osa = σ(W s
a ∗ [fsi , fsa ] + b), (3)

where osi and osa denote the weight tensors corresponding to
the input feature maps fsi and fsa , respectively. Using the
sigmoid unit, the weight values in osi and osa are constrained
within the range of [0, 1]. Besides, in Eqs. 2-3, (W s

i , b) and
(W s

a , b) are parameters corresponding to two convolutional
layers, respectively.

Each weight tensor is further combined with its original fea-
ture map by an element-wise multiplication operation, leading
to a weighted feature map. Finally, the weighted feature maps
corresponding to the segmentation and anatomical attention
subnetworks are fused by an element-wise addition operation
to generate a weighted sum feature map. The output feature
map fso of the anatomical gate can be represented as:

fso = osi · fsi + osa · fsa . (4)

Based on the proposed anatomical gates at different layers,
the proposed deep network in Fig. 1 can not only capture the
local context information of the to-be-segmented images (via
the segmentation subnetwork), but also includes the anatom-
ical prior of brain structures provided by multiple atlases
(via the anatomical attention subnetwork) at different scales.
Notably, using the anatomical gates, our method could auto-
matically learn the optimal weights of feature maps generated
by two subnetworks in Fig 1, which is expected to efficiently
fuse two subnetworks for accurate ROI segmentation.

D. Implementation

As shown in Fig. 1, in the proposed anatomical attention
guided deep learning framework, we employ the U-Net archi-
tecture [18], [19] to implement the segmentation subnetwork,
and we denote this model as attention gated U-Net (AG-
UNet) in this work. Using different network architectures,
we can derive different models for brain ROI segmentation.
Therefore, besides using U-Net, we further employ a fully

convolutional network (FCN) [20] to implement the segmen-
tation subnetwork, and denote this model as attention gated
FCN (AG-FCN). The detailed architecture of AG-FCN can be
found in Fig. S1 of the Supplementary Materials. Note that in
our AG-UNet and AG-FCN models, the anatomical attention
subnetworks share the similar network architecture with their
corresponding segmentation subnetworks, respectively.

In the training stage, we feed label maps of multiple atlases
to the attention subnetwork and the training images to the
segmentation subnetwork, respectively. These multiple atlases
have been aligned to each training MR image via affine
and deformable registration. With the ground-truth label map
of the training image as the output, we train the proposed
anatomical attention guided network in an end-to-end manner.
We empirically set the mini-batch size as 1, the number of
epochs as 1, 000, and the learning rate as 0.001, respectively. It
requires ∼ 24 hours to train each of the proposed two models.

In the test stage, we first align multiple atlases to the to-be-
segmented (i.e., target) image. Then, we feed both label maps
of multiple atlases and the target image to the trained network
to predict its probability map for brain ROI segmentation.
Given C ROIs, for each to-be-segmented voxel vi, we use
the MAP criterion to obtain its label as follows

l(vi) = argmax
c
{pc

i}Cc=1, (5)

through which we can generate a label map for the test image.

IV. EXPERIMENT

In this section, we first present materials and experimental
settings used in our study. We then present experimental results
achieved by different methods on two public datasets with
brain MR images.

A. Materials

We evaluate the proposed methods on two public datasets,
including 1) the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset [44], and 2) the LONI-LPBA40 dataset [45].
More details can be found as follows.

1) ADNI [44]: Following previous studies [24], [29], we
employ 60 subjects from ADNI for hippocampus seg-
mentation, including 20 Alzheimer’s disease (AD) sub-
jects, 20 mild cognitive impairment (MCI) subjects and
20 normal control (NC) subjects. These brain MR im-
ages were acquired in the sagittal view, with the in-plane
resolution of 1mm × 1mm and the slice thickness of
1.2mm. All images are resampled to have the resolution
of 1×1×1mm3 with trilinear interpolation. The ground-
truth label maps were created manually to annotate the
right and left hippocampus regions in the brain. We
perform pre-processing for all MR images via three
procedures, including skull removal [46], N4-based bias
field correction [47], and intensity standardization [48].
Following [16], [24], we randomly select 20 subjects as
atlas images, and the remaining images are randomly
split into 2 subsets for 2-fold cross-validation on ADNI.

2) LONI-LPBA40 [45]: The LONI-LPBA40 datasets is
provided by the Laboratory of Neuro Imaging (LONI)
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at UCLA, which contains 40 brain MR images and their
corresponding label maps were created manually to an-
notate the brain structures. High-resolution 3D Spoiled
Gradient Echo (SPGR) MRI volumes were acquired on
a GE 1.5 Tesla system as 124 contiguous 1.5 mm
coronal brain slices (TR: 10.00-12.50ms; TE: 4.22-
4.50ms; FOV: 220mm or 200mm) with in-plane voxel
resolution of 0.86 mm or 0.78 mm. All images are
resampled to have the resolution of 1×1×1mm3 with
trilinear interpolation. Besides, these MRI volumes are
rigidly aligned to the MNI305 template [45]. Following
previous studies [24], [49], for this dataset, we randomly
select 20 subjects as atlas images, and the remaining
20 subjects are randomly split into 5 subsets for 5-fold
cross-validation on LONI-LPBA40.

B. Experimental Settings

For all pre-processed brain MR images, we perform affine
registration by FLIRT in the FSL [40] toolbox, using the
normalized mutual information as the similarity metric, 12
degrees of freedom and the search range ±20 in all directions.
Then, we further perform a deformable registration using the
Diffeomorphic Demons method [41] with default parameters
(i.e., smoothing kernel size of 2.0, and iterations in low, middle
and high resolutions as 20× 10× 5).

By implementing our proposed framework based on two
well-known network architectures (i.e., FCN and U-Net), we
have two novel anatomical gated networks dubbed as AG-FCN
and AG-UNet, respectively. We compare our proposed AG-
FCN and AG-UNet methods with their conventional counter-
parts (i.e., FCN and U-Net) in the experiments. Two evaluation
metrics are used to measure the segmentation performance of
different methods in the experiments. Specifically, we first use
the Dice coefficient (DC) as the evaluation metric, defined as

DC =
2|R1 ∩R2|
|R1|+ |R2|

, (6)

where the term ∩ denotes the overlap between the segmented
region R1 and the ground truth R2, and |·| denotes the number
of voxels belonging to each ROI. Meanwhile, we also use the
average surface distance (ASD) to measure the performance of
different segmentation algorithms, defined as

ASD =
1

2
(
1

n1

∑
r1∈S(R1)

d(r1, S(R2))

+
1

n2

∑
r2∈S(R2)

d(r2, S(R1))),
(7)

where d(·, ·) measures the Euclidean distance, and n1 and n2
are the numbers of vertices in the surface S(R1) and S(R2),
respectively. Also, r1 and r2 denotes vertices in the surface
S(R1) and S(R2), respectively.

C. Results on ADNI

We first perform hippocampus segmentation on the ADNI
dataset. Table I shows the Dice coefficient (DC) and the
average surface distance (ASD) values achieved by our AG-
FCN, AG-UNet and their conventional counterparts (i.e., FCN

TABLE I
SEGMENTATION RESULTS OF FCN, AG-FCN, U-NET AND AG-UNET ON

THE ADNI DATASET FOR THE hippocampus SEGMENTATION. THE TERMS a
AND b IN “a± b” DENOTE THE MEAN AND STANDARD DEVIATION FOR

DIFFERENT SUBJECTS, RESPECTIVELY. THE SYMBOL ‘*’ INDICATES THAT
OUR PROPOSED METHOD CAN SIGNIFICANTLY IMPROVE ITS

CONVENTIONAL COUNTERPART BASED ON WILCOXON SIGNED RANK
TEST IN TERMS OF DC.

Method DC ASD (mm)
FCN 0.8206± 0.0278 0.588± 0.078
*AG-FCN (Ours) 0.8493± 0.0250 0.541± 0.075
U-Net 0.8597± 0.0159 0.536± 0.071
*AG-UNet (Ours) 0.8864± 0.0212 0.386± 0.058

Best

Median

Worst

FCN AG-FCN (Ours) U-Net AG-UNet (Ours)
Fig. 3. Visual illustration of surface distance between the segmentation results
of different methods and ground truth on the hippocampus region. The best,
median and worst are the best, media and worst segmented subjects in terms
of average surface distance by the proposed AG-UNet method, respectively.

and U-Net). We further perform the Wilcoxon signed rank
test on the Dice coefficient results achieved by different
segmentation methods. Our proposed AG-FCN and AG-UNet
show the significant improvement (p < 0.05) over FCN
(p = 4.4934e − 04) and U-Net (p = 3.9023e − 04) on
hippocampus segmentation task. The symbol ‘∗’ in Table I
indicates that our proposed AG-FCN and AG-UNet achieves
statistically significant improvement over their conventional
counterparts, respectively.

From Table I, we can observe that the proposed AG-UNet
achieves the best performance for hippocampus segmentation
regarding the Dice coefficient metric. For example, our AG-
UNet methods achieves the highest Dice coefficient (i.e.,
0.8864), which is significantly better than the U-Net method
(i.e., 0.8597). Meanwhile, the proposed AG-FCN method also
achieves significant improvement over FCN. In general, the
proposed AG-FCN and AG-UNet achieve 0.0287 and 0.0267
improvement in terms of Dice coefficient over their counter-
parts, i.e., FCN and U-Net, respectively. Besides, our proposed
methods also achieve better results in terms of ASD values,
compared with FCN and U-Net. The ASD values achieved
by AG-FCN and AG-UNet for hippocampus segmentation
are 0.541 and 0.386, respectively, Which is significantly
better than FCN and U-Net. These results demonstrate that
incorporating the anatomical structure information (provided
by atlases) to the deep learning framework, as we do in
AG-FCN and AG-UNet methods, can boost the segmentation
performance. On the other hand, compared the FCN and AG-
FCN methods, the U-Net and AG-UNet approaches usually
achieve better segmentation results. The possible reason is that,
with the coarse-fine-connected shortcut architecture, U-Net
and AG-UNet can fuse the high-level global contextual feature
maps and the high-resolution global feature maps, while FCN
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TABLE II
SEGMENTATION RESULTS ACHIEVED BY FCN, AG-FCN, U-NET AND
AG-UNET ON THE LONI-LPBA40 DATASET. THE TERMS a AND b IN

“a± b” DENOTE THE MEAN AND STANDARD DEVIATION FOR DIFFERENT
SUBJECTS, RESPECTIVELY. THE SYMBOL ‘*’ INDICATES THAT OUR

PROPOSED METHOD CAN SIGNIFICANTLY IMPROVE ITS CONVENTIONAL
COUNTERPART BASED ON WILCOXON SIGNED RANK TEST (p < 0.05) IN

TERMS OF DC.

Method DC ASD (mm)
FCN 0.7625± 0.0399 1.189± 0.078
*AG-FCN (Ours) 0.7826± 0.0377 1.099± 0.037
U-Net 0.7817± 0.0409 1.142± 0.220
*AG-UNet (Ours) 0.8067± 0.0383 1.070± 0.036

and AG-FCN has no such shortcut architecture.
In Fig. 3, we plot the best, median and worst automatically

segmented subjects by AG-UNet in terms of average surface
distance between the segmentation images and ground truth
on the left and right hippocampus regions. Meanwhile, we
also plot surface distance between the automatic segmentation
images and ground truth, achieved by FCN, AG-FCN and U-
Net, respectively. As shown in Fig. 3, our proposed methods
produce the better quality of segmentation results on hip-
pocampus when compared with their conventional counterpart-
s, respectively. These results further validate that conventional
deep learning methods (i.e., FCN and U-Net) using only the
intensity image can’t yield accurate segmentation results in
brain ROI segmentation. Incorporating the anatomical prior
from atlases into deep networks could further improve the
performance for brain ROI segmentation, as we do in AG-
FCN and AG-UNet. The possible reason for the improvement
is that the anatomical prior provide the information of brain
structures, which can enhance the segmentation results around
the boundary of ROIs with low intensity contrast.

D. Results on LONI-LPBA40

In the second group of experiments, we validate our pro-
posed methods on the LONI-LPBA40 dataset to segment 54
ROIs in each brain MR image. The segmentation results
achieved by four different methods are shown in Table II and
Fig. S2 in the Supplementary Materials. We also perform the
Wilcoxon signed rank test on each ROI in terms of Dice co-
efficient for our methods and their conventional counterparts.

From Table II, we can see that the average Dice coeffi-
cient on 54 ROIs are 0.7826 and 0.8067 yielded by AG-
FCN and AG-UNet, respectively, which are higher than those
achieved by FCN (0.7625) and U-Net (0.7817). In general,
the proposed AG-FCN and AG-UNet achieved 0.0201 and
0.0250 improvements over their counterparts, respectively. The
achieved average surface distance on 54 ROIs are 1.099 mm
and 1.070 mm by our proposed AG-FCN and AG-UNet,
respectively, compared with 1.189 mm and 1.142 mm by
FCN and U-Net, respectively. Besides, our AG-FCN and AG-
UNet methods achieve significant improvement (p < 0.05)
over FCN (p = 8.8575e− 05) and U-Net (p = 1.0335e− 04)
in terms of Dice coefficient, respectively. As can be seen from
Fig. S2, the Dice coefficient on 54 ROIs achieved by AG-FCN
and AG-UNet outperform their conventional counterparts (i.e.,
FCN and U-Net) in most ROIs.

V. DISCUSSION

In this section, we first compare our proposed deep learning
methods with several state-of-the-art multi-atlas based seg-
mentation methods for brain ROI segmentation. Then, we
study the influence of the important parameter (i.e., the number
of atlases) and deformable registration process on the perfor-
mance of our methods. Finally, we present the limitations of
this work as well as possible future research directions.

A. Comparison with Multi-atlas Segmentation Methods

Since multi-atlas based methods have been widely studied
in the field of brain ROI segmentation, we now compare
our proposed deep learning methods (i.e., AG-FCN and AG-
UNet) with several state-of-the-art multi-atlas segmentation
methods on both the ADNI and LONI-LPBA40 datasets.
Specifically, the proposed AG-FCN and AG-UNet methods
are compared with four well-known multi-atlas segmentation
methods, including the locally-weighted weighting (LWV)
method [21], the patch-based method (PBM) [14], the joint
label fusion (JLF) method [16], [43], and the sparse patch-
based method (SPBM) [23]. In these four multi-atlas seg-
mentation methods, we utilize the most commonly used pa-
rameters in literature, i.e., both the patch size and search
region are set as 7 × 7 × 7. For a fair comparison, all six
methods (i.e., LWV, PBM, JLF, SPBM, AG-FCN, and AG-
UNet) employ the same parameters for affine registration by
FLIRT in the FSL [40] toolbox and deformable registration
by Diffeomorphic Demons method [41]. In the experiments,
the time costs for image registration using the FLIRT and
Diffeomorphic Demons algorithms are about 30 seconds and
120 seconds per brain MR image, respectively. Note that all
six methods use anatomical structure information of the brain
provided by multiple labeled atlases. The difference is that our
methods (i.e., AG-FCN and AG-UNet) use end-to-end deep
networks to learn image features in a task-oriented manner,
while the multi-atlas based approaches (i.e., LWV, PBM,
JLF, and SPBM) employ hand-crafted features (i.e., image
intensity) to represent brain MR images. The experimental
results achieved by six different methods on the ADNI and
LONI-LPBA40 datasets are reported in Table III and Table IV,
respectively. The symbol ‘∗’ in Table III and Table IV indicates
that our proposed AG-UNet achieves statistically significant
improvement over the multi-atlas segmentation method.

As shown in Table III and Table IV, our proposed AG-UNet
method achieves the overall best segmentation results for brain
ROI segmentation on both ADNI and LONI-LPBA40 datasets.
More specifically, it can be seen from Table III, our proposed
AG-UNet method achieves the best segmentation performance
on the ADNI dataset for hippocampus segmentation. The
Dice coefficient and the average surface distance achieved
by AG-UNet are 0.8864 and 0.386 mm for hippocampus
segmentation on ADNI, respectively, which are superior to
the best results of multi-atlas based methods (i.e., the Dice
coefficient and the average surface distance are 0.8775 and
0.401 mm achieved by SPBM). Also, as can be observed
from Table IV that the proposed AG-UNet achieves the best
segmentation results on LONI-LPBA40 for segmentation of
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TABLE III
SEGMENTATION RESULTS OF FOUR MULTI-ATLAS BASED METHODS (i.e.,
LWV, PBM, JLF, SPBM) AND OUR AG-FCN AND AG-UNET METHODS
ON THE ADNI DATASET FOR hippocampus SEGMENTATION. THE TERMS a

AND b IN “a± b” DENOTE THE MEAN AND STANDARD DEVIATION FOR
DIFFERENT SUBJECTS, RESPECTIVELY. THE SYMBOL ‘*’ INDICATES THAT

OUR PROPOSED AG-UNET ACHIEVED SIGNIFICANTLY IMPROVEMENT
OVER THE MULTI-ATLAS SEGMENTATION METHOD BASED ON WILCOXON

SIGNED RANK TEST (p < 0.05) IN TERMS OF DC.

Method DC ASD (mm)
*LWV 0.8546± 0.0144 0.453± 0.041
*PBM 0.8697± 0.0310 0.456± 0.138
*JLF 0.8731± 0.0395 0.405± 0.074
*SPBM 0.8775± 0.0378 0.401± 0.096
AG-FCN (Ours) 0.8493± 0.0250 0.541± 0.075
AG-UNet (Ours) 0.8864± 0.0212 0.386± 0.058

multiple ROIs. Besides, as shown in Table III, Table IV,
the proposed AG-FCN method produces worse results than
AG-UNet on both ADNI and LONI-LPBA40 datasets. For
instance, in terms of average surface distance, AG-UNet
yields a much better result than AG-FCN on the LONI-
LPBA40 dataset. The possible reason is that, even though
AG-FCN can extract high-level contextual features of brain
MR images, it loses local spatial information of brain MR
images by using pooling operations. In contrast, the AG-
UNet method employs multiple skip connection operations
to fuse the high-level contextual features and high-resolution
spatial features for the dense prediction, which can boost the
segmentation performance. This can also be seen from Fig. 3.
That is the proposed AG-FCN with the FCN architecture
produces coarse segmentation results for brain MR images
with the low intensity contrast around the boundary of ROIs,
in comparison to AG-UNet. Besides, the proposed AG-UNet
shows significant improvement over the most of multi-atlas
segmentation methods based on Wilcoxon signed rank test
(p < 0.05). For example, the proposed AG-UNet achieves
significant improvement over JLF (p = 1.0335e − 04) and
SPBM (p = 5.9342e − 04) in terms of Dice coefficient on
ADNI dataset for hippocampus segmentation, respectively.
Also, the p-values of AG-UNet over JLF and SPBM are 0.0013
and 0.1014 in terms of Dice coefficient on LONI-LPBA40 for
whole brain segmentation.

On the other hand, compared to traditional multi-atlas based
methods, the proposed anatomical attention guided deep net-
works (i.e., AG-FCN and AG-UNet) are more computationally
efficient. For example, without considering the time consump-
tion of image registration, the JLF method requires more than
1 hour1 to segment each MR image into 54 ROIs using 20
atlases on LONI-LPBA40, while our proposed AG-UNet only
need 5 seconds per image with 20 atlases. This could be partly
because our end-to-end learning strategy used in AG-UNet has
high computational efficiency for dense segmentation.

B. Comparison with State-of-the-art Deep Learning Methods

Our proposed method is a general framework and can
easily be combined with existing state-of-the-art segmenta-
tion network architectures. Within this framework, besides

1https://www.nitrc.org/projects/picsl malf

TABLE IV
SEGMENTATION RESULTS OF FOUR MULTI-ATLAS BASED METHODS (i.e.,
LWV, PBM, JLF, SPBM) AND OUR AG-FCN AND AG-UNET METHODS

ON THE LONI-LPBA40 DATASET FOR SEGMENTATION OF MULTIPLE
ROIS. THE TERMS a AND b IN “a± b” DENOTE THE MEAN AND STANDARD
DEVIATION FOR DIFFERENT SUBJECTS, RESPECTIVELY. THE SYMBOL ‘*’
INDICATES THAT OUR PROPOSED AG-UNET ACHIEVED SIGNIFICANTLY

IMPROVEMENT OVER THE MULTI-ATLAS SEGMENTATION METHOD BASED
ON WILCOXON SIGNED RANK TEST (p < 0.05) IN TERMS OF DC.

Method DC ASD (mm)
*LWV 0.7822± 0.0088 1.234± 0.049
*PBM 0.7881± 0.0091 1.170± 0.056
*JLF 0.7926± 0.0107 1.181± 0.061
SPBM 0.7965± 0.0100 1.196± 0.048
AG-FCN (Ours) 0.7826± 0.0377 1.099± 0.037
AG-UNet (Ours) 0.8067± 0.0383 1.070± 0.036

AG-FCN and AG-UNet, we further develop three methods
based on three state-of-the-art network architectures, i.e.,
DeepNAT [50], residual-FCN [51] (R-FCN) and attention-
UNet [52] (A-UNet), and denote the corresponding methods
as anatomical gated DeepNAT (AG-DeepNAT), anatomical
gated A-UNet (AG-AUNet), and anatomical gated R-FCN
(AG-RFCN), respectively. We evaluate the proposed three
methods (i.e., AG-DeepNAT, AG-RFCN, and AG-AUNet) and
their conventional counterparts (i.e., DeepNAT, R-FCN, and
A-UNet) on the ADNI and LONI-LPBA40 datasets for brain
ROI segmentation, with results are reported in Table V and
Table VI, respectively.

As can be seen from Table V and Table VI, the proposed
methods consistently outperform their counterparts on two
datasets. For example, the AG-AUNet achieved 0.0258 im-
provement over A-UNet on ADNI dataset for hippocampus
segmentation. We also perform the Wilcoxon signed rank
test on the results achieved by our proposed methods and
their counterparts in terms of Dice coefficient, respectively.
The symbol ‘*’ in Tables V- VI indicates that our pro-
posed methods achieve statically significant improvement over
their counterparts. Our proposed AG-DeepNAT, AG-RFCN
and AG-AUNet show significant improvement (p<0.05) over
DeepNAT (p = 1.0335e−04), R-FCN (p = 1.0509e−05) and
A-UNet (p = 5.1004e − 05) on ADNI dataset for hippocam-
pus segmentation, respectively. Meanwhile, the proposed AG-
DeepNAT, AG-RFCN and AG-AUNet show significant im-
provement (p<0.05) over DeepNAT (p = 8.8475e − 05), R-
FCN (p = 8.8575e − 05) and A-UNet (p = 1.0335e − 04)
in terms of Dice coefficient on LONI-LPBA40 dataset for
brain ROI segmentation, respectively. Beside, results in Ta-
bles I, II, V and VI suggest that R-FCN generally achieves
better results than FCN and A-UNet is superior to U-Net.
This implies that using self-attention units (as A-UNet) and
residual connections (as in R-FCN) could further improve the
segmentation performance of deep networks. Also, utilizing
anatomical information provided atlases (as we do in AG-
DeepNAT) can boost the segmentation performance of Deep-
NAT. These results further demonstrate the effectiveness of our
proposed anatomical attention guided deep learning framework
for brain ROI segmentation.

https://www.nitrc.org/projects/picsl_malf
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TABLE V
SEGMENTATION RESULTS ACHIEVED BY DEEPNAT, AG-DEEPNAT,

R-FCN, AG-RFCN, A-UNET AND AG-AUNET ON THE ADNI DATASET
FOR hippocampus SEGMENTATION. THE TERMS a AND b IN “a± b”

DENOTE THE MEAN AND STANDARD DEVIATION FOR DIFFERENT
SUBJECTS, RESPECTIVELY. THE SYMBOL ‘*’ INDICATES THAT OUR

PROPOSED METHOD CAN SIGNIFICANTLY IMPROVE ITS CONVENTIONAL
COUNTERPART BASED ON WILCOXON SIGNED RANK TEST (p < 0.05) IN

TERMS OF DC.

Method DC ASD (mm)
DeepNAT 0.8502± 0.0283 0.517± 0.084
*AG-DeepNAT(Ours) 0.8695± 0.0282 0.448± 0.081
R-FCN 0.8331± 0.0371 0.574± 0.090
*AG-RFCN (Ours) 0.8655± 0.0226 0.471± 0.064
A-UNet 0.8615± 0.0221 0.501± 0.073
*AG-AUNet (Ours) 0.8873± 0.0201 0.379± 0.061

TABLE VI
SEGMENTATION RESULTS ACHIEVED BY DEEPNAT, AG-DEEPNAT,

R-FCN, AG-RFCN, A-UNET AND AG-AUNET ON THE LONI-LPBA40
DATASET. THE TERMS a AND b IN “a± b” DENOTE THE MEAN AND

STANDARD DEVIATION FOR DIFFERENT SUBJECTS, RESPECTIVELY. THE
SYMBOL ‘*’ INDICATES THAT OUR PROPOSED METHOD CAN

SIGNIFICANTLY IMPROVE ITS CONVENTIONAL COUNTERPART BASED ON
WILCOXON SIGNED RANK TEST (p < 0.05) IN TERMS OF DC.

Method DC ASD (mm)
DeepNAT 0.7789± 0.0271 1.138± 0.136
*AG-DeepNAT (Ours) 0.7987± 0.0166 1.085± 0.035
R-FCN 0.7705± 0.0388 1.139± 0.107
*AG-RFCN (Ours) 0.7938± 0.0365 1.057± 0.065
A-UNet 0.7880± 0.0386 1.136± 0.186
*AG-AUNet (Ours) 0.8101± 0.0376 1.046± 0.185

C. Influence of Anatomical Gate Architecture

To evaluate the effectiveness of the anatomical gate archi-
tecture, we further compare the proposed AG-FCN and AG-
UNet with their counterparts using multi-channel and feature
concatenation strategies on the ADNI and LONI-LPBA40
datasets. We first compare AG-FCN and AG-UNet with their
multi-channel counterparts (called AM-FCN and AM-UNet,
respectively). Specifically, AM-FCN and AM-UNet directly
use multiple atlases and each input image as multi-channel
(i.e., [I,L1, · · · ,Lk]) input data, while our AG-FCN and AG-
UNet feed those K atlases into the proposed Anatomical
Attention Subnetwork (as shown in Fig. 1). We then compare
AG-FCN and AG-UNet with their feature concatenation coun-
terparts (called AC-FCN and AC-UNet, respectively), where
the proposed anatomical gate is replaced by the feature con-
catenation operation. Specifically, in AC-FCN and AC-UNet,
feature maps generated by the segmentation and anatomical
attention subnetworks are concatenated channel-wisely.

Table VII and Table VIII report the segmentation results
achieved by six different methods on the ADNI and LONI-
LPBA40 datasets, respectively. From the Table VII and Ta-
ble VIII, we can see that the proposed AG-UNet achieves
the best performances on the ADNI dataset for hippocampus
segmentation and the LONI-LPBA40 for whole brain segmen-
tation. For instance, the proposed AG-UNet achieves the best
Dice coefficient (0.8864) on ADNI, which is superior to that
of AM-UNet (0.8713) and AC-UNet (0.8735). Besides, among
three FCN-based methods (i.e., AM-FCN, AC-FCN, and AG-
FCN), AG-FCN consistently achieves the best performance

TABLE VII
SEGMENTATION RESULTS ACHIEVED BY AM-FCN, AC-FCN, AG-FCN,

AM-UNET, AC-UNET AND AG-UNET ON THE ADNI DATASET FOR
hippocampus SEGMENTATION. THE TERMS a AND b IN “a± b” DENOTE

THE MEAN AND STANDARD DEVIATION FOR DIFFERENT SUBJECTS,
RESPECTIVELY.

Method DC ASD (mm)
AM-FCN 0.8380± 0.0244 0.557± 0.067
AC-FCN 0.8386± 0.0279 0.555± 0.086
AG-FCN (Ours) 0.8493± 0.0250 0.541± 0.075

AM-UNet 0.8713± 0.0265 0.446± 0.085
AC-UNet 0.8735± 0.0245 0.441± 0.076
AG-UNet (Ours) 0.8864± 0.0212 0.386± 0.058

TABLE VIII
SEGMENTATION RESULTS ACHIEVED BY AM-FCN, AC-FCN, AG-FCN,

AM-UNET, AC-UNET AND AG-UNET ON THE LONI-LPBA40 DATASET.
THE TERMS a AND b IN “a± b” DENOTE THE MEAN AND STANDARD

DEVIATION FOR DIFFERENT SUBJECTS, RESPECTIVELY.

Method DC ASD (mm)
AM-FCN 0.7757± 0.0399 1.110± 0.045
AC-FCN 0.7783± 0.0392 1.109± 0.041
AG-FCN (Ours) 0.7826± 0.0377 1.099± 0.037

AM-UNet 0.7952± 0.0445 1.106± 0.042
AC-UNet 0.7991± 0.0441 1.091± 0.041
AG-UNet (Ours) 0.8067± 0.0383 1.070± 0.036

on both datasets. These results suggest that, to take advan-
tage of anatomical prior provided by multiple atlases, our
anatomical gate strategy is superior to that the conventional
multi-channel strategy and feature concatenation strategy. The
possible reason is that, using the proposed anatomical gate
architecture to learn task-oriented fusion weights, our AG-
FCN and AG-UNet can effectively fuse feature maps learned
from the input image and multiple labeled atlases for boosting
segmentation performance, compared with their multi-channel
variants (i.e., AM-FCN and AM-UNet) and feature concatena-
tion variants (i.e., AC-FCN and AC-UNet). On the other hand,
from Tables I-II and Tables VII-VIII, one can observe that
AM-FCN, AC-FCN, AG-FCN, AM-UNet, AC-UNet and AG-
UNet achieve better results in terms of DC and ASD over their
counterparts, i.e., FCN and U-Net, respectively. It suggests
that using anatomical information provided by labeled atlases
could boost segmentation performance of FCN and U-Net.

D. Influence of Number of Atlases

The number of atlases is an important parameter in the
proposed network. We now study the influence of the number
of atlases for our proposed AG-UNet method on the ADNI
dataset, by varying the number of atlases within the range
of [5, 10, 15, 20]. Fig. 4 shows the Dice coefficient and
the average surface distance values achieved by our AG-UNet
approach using different numbers of atlases.

From Fig. 4, we can see that the best performance is
achieved by AG-UNet when the number of atlases is 20
on ADNI for hippocampus segmentation. For instance, the
best Dice coefficient and average surface distance are 0.8864
and 0.386 mm, respectively, achieved by AG-UNet when the
number of atlases is fixed as 20. Also, using only 5 atlases,
our AG-UNet method can only yield the Dice coefficient
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Fig. 4. Dice coefficient (DC) and average surface distance (ASD) achieved
by the proposed AG-UNet method, using different numbers of atlases for
hippocampus segmentation on the ADNI dataset.
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Fig. 5. Visual illustration of surface distance between the segmentation results
of U-Net and AG-UNet (with different numbers of atlases) and ground truth
on the smallest, median and largest hippocampus regions on ADNI dataset,
respectively. The number ‘a’ in “AG-UNet (a)” denote the number of atlases.

of 0.08695 and the average surface distance of 0.447 mm.
Notably, the ADNI dataset consists of 20 AD subjects, 20
MCI subjects, and 20 NC subjects. Due to the brain of AD
patients are extreme atrophy, the volume of hippocampus on
the ADNI dataset is in a wide range, i.e., [3000, 5300]. In
Fig. 5, we plot the segmented subject by U-Net and AG-UNet
with different number of atlases in terms of average surface
distance between the segmentation images and ground truth
on the smallest, median and largest hippocampus regions. As
shown in Fig. 5, our AG-UNet generally outperforms U-Net
on the smallest, median and largest hippocampus regions. This
implies that the proposed AG-UNet can better handle brains
with large inter-subject morphological variances compared to
its traditional counterpart (i.e., U-Net) that does not use the
anatomical information provided by the labeled atlases. From
Fig. 5, one may also observe that AG-UNet achieves the best
visual quality when the number of atlases is 20 on ADNI for
hippocampus segmentation. The possible reason is that the
multiple atlases could provide more anatomical information
of the brain for ROI segmentation. These results indicate
that using an appropriate number of atlases will increase the
performance of our proposed method.

E. Influence of Deformable Registration

As reported in previous studies [31], [34], [35], the de-
formable registration could further improve the segmentation
performance of multi-atlas based methods. In light of this, we
also use the Diffeomorphic Demons method [41] to register
atlas images onto the to-be-segmented image after linear regis-
tration. To investigate the influence of deformable registration
on the performance of our method, we also perform the
hippocampus segmentation on ADNI, with atlas images only

TABLE IX
SEGMENTATION RESULTS OF THREE METHODS (i.e., AG-UNET-L,

AG-UNET-A, AND AG-UNET) IN hippocampus SEGMENTATION ON THE
ADNI DATASET. THE TERMS a AND b IN “a± b” DENOTE THE MEAN AND

STANDARD DEVIATION FOR DIFFERENT SUBJECTS, RESPECTIVELY.

Method DC ASD (mm)
AG-UNet-L 0.8712± 0.0228 0.448± 0.079
AG-UNet-A 0.8833± 0.0205 0.399± 0.059
AG-UNet 0.8864± 0.0212 0.386± 0.058

linearly registered onto the to-be-segmented image by using
FLIRT algorithm in [40] toolbox. In this work, we denote our
AG-UNet approach with only the linearly registered atlases as
AG-UNet-L, while AG-UNet employs atlases pre-processed
by both linear and deformable registration algorithms. Be-
sides, we also use the ANTs Symmetric Normalization (SyN)
algorithm [39] for deformable registration after the linear
registration, dubbed AG-UNET-A. Table IX shows the seg-
mentation results achieved by three methods in hippocampus
segmentation on the ADNI dataset.

As can be observed from Table IX, compared to the AG-
UNet-L, AG-UNet-A and AG-UNet achieve the improvement
of 0.0121, and 0.0152 in terms of Dice coefficient. These
results indicate that the deformable registration methods could
further boost the segmentation performance of our proposed
AG-UNet method. The possible reason for the improvement
is that the deformable registration helps reduce the possible
registration errors caused by the linear registration. Hence, the
proposed network could be able to capture more precise local
anatomical prior of brain structures by pooling operations,
where the pooling operation is based on local brain patterns on
registered atlases. For each brain MR image, the time costs of
FLIRT, Diffeomorphic Demons and SyN are about 30 seconds,
120 seconds and 15 seconds, respectively.

F. Influence of Network Parameter

We now study the influence of the number of network
parameters, by varying the number of channels in the proposed
AG-UNet and its conventional counterpart (i.e., U-Net). The
experimental results achieved by these two methods in the
task of hippocampus segmentation on the ADNI dataset are
reported in Table X. It can be seen from Table X that, when
using the same number of channels (e.g., 16), the number
of parameters in AG-UNet (i.e., 0.77M ) is approximately
twice that (i.e., 0.39M ) of U-Net, and the segmentation
results achieved by AG-UNet are better than those of U-Net
in terms of both DC and ASD values. Even though U-Net
using a larger number of parameters (e.g., 6.20M with 64
channels), its performance is still worse than our AG-UNet
with 16 channels. We also perform the Wilcoxon signed rank
test on the results achieved by our AG-UNet and U-Net in
terms of DC values. The proposed AG-UNet with 16 and 32
channels at the first layer achieve significant improvement over
U-Net with 32 (p = 3.3845e − 04) and 64 (p = 0.0040)
channels at the first layer, respectively. These results suggest
that the proposed anatomical attention subnetwork provides
an efficient and flexible solution to boost the performance of
conventional deep networks.
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TABLE X
SEGMENTATION RESULTS OF U-NET AND AG-UNET WITH 16, 32, 64 CHANNELS (AT THE FIRST LAYER) ON ADNI DATASET FOR hippocampus

SEGMENTATION. THE TERMS a AND b IN “a± b” DENOTE THE MEAN AND STANDARD DEVIATION FOR DIFFERENT SUBJECTS, RESPECTIVELY. M:
MILLION.

Channel # U-Net AG-UNet (Ours)
DC ASD (mm) Parameter # DC ASD (mm) Parameter #

16 0.8522± 0.0213 0.549± 0.085 0.39M 0.8818± 0.0220 0.405± 0.064 0.77M
32 0.8597± 0.0212 0.536± 0.071 1.55M 0.8864± 0.0212 0.386± 0.058 3.06M
64 0.8628± 0.0325 0.486± 0.076 6.20M 0.8892± 0.0221 0.371± 0.062 12.24M

G. Limitations and Future Work

There are still several limitations in the current work. First,
the proposed network architecture consists of two subnetwork-
s, which will increase the memory burden for segmentation.
Hence, model compression is an important research direc-
tion for practical applications. Second, we treat each atlas
equally without considering the similarity between the to-be-
segmented brain MR image and each atlas image. In the future,
we plan to learn anatomical prior knowledge from each atlas
based on its similarity with the target image. Third, we only
use the label maps of atlases for brain ROI segmentation,
while the image intensity of multiple atlases may provide
complementary information. Thus, as another future work,
we plan to employ both the intensity information and label
maps of atlases to further boost the segmentation performance.
Third, we only evaluate our methods in the segmentation of
brain MR images in the current work. In the future, we plan to
validate our proposed method on other datasets. For example,
the coronary artery images usually have a large variance in
appearance (with potentially larger deformations) and sparse
structures in the images/patches [53]. Hence, incorporating
appropriate shape priors and cost-sensitive losses into our
method is expected to improve the segmentation performance.
Finally, several post-processing methods based on anatomical
priors [54], [55] have been recently proposed for refining the
segmentation results after the initial segmentation has been
achieved, where the initial segmented errors can be corrected
by using the additional refined segmentation step. Compared
with these methods, our proposed framework can provide
more accurate segmentation results in the initial step. To take
advantage of our methods and post-processing methods, in the
future, we plan to extend our proposed method by treating our
generated results as the input of those post-processing methods
to further boost the results.

VI. CONCLUSION

In this paper, we proposed an anatomical attention guid-
ed deep learning framework for ROI segmentation of brain
MR images, including a segmentation subnetwork and an
anatomical attention subnetwork. Specifically, the segmenta-
tion subnetwork is used to extract feature representations of
brain MR images, while the anatomical attention subnetwork
is employed to learn the anatomical prior from a set of
registered atlases. We further introduce an anatomical gate
to automatically fuse the feature maps generated by these
subnetworks, to include not only the contextual information
of to-be-segmented brain MR images, but also the anatomical
prior of brain structures provided by multiple atlases. Within

this framework, we develop two anatomical attention guided
segmentation methods (i.e., AG-FCN and AG-UNet) based
on two different network architectures. Experiments on both
the ADNI and the LONI-LPBA40 datasets suggest that our
proposed AG-FCN and AG-UNet approaches can achieve
superior results on ROI segmentation of brain MR images,
compared with several state-of-the-art methods.
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